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for Delay Differential Equations 
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Abstract. The absolute and relative stability of linear multistep methods for a 

finite step size is studied for delay differential equations. The differential equa- 

tions are assumed linear and the delays a constant integer multiple of the step 

size. Computable conditions for stability are developed for scalar equations. 

Plots of the stability regions for several common multistep methods are included. 

For the integration methods considered, the stability regions for delay differ- 

ential equations are significantly different from the stability regions for ordinary 

differential equations. 

Introduction. The stability of multistep integration methods applied to ordinary 

differential equations has received considerable attention in the literature [1] -[51, but 

little has been published on the stability of integration algorithms applied to delay (or 

retarded) differential equations [6] . An indication of the importance of delay differ- 

ential equations is evidenced by the many different areas in which they describe physi- 

cal systems, such as electrostatic charge problems, automatic controls, machine tools, 

biological systems, and number theory problems. It has been shown that the linear 

multistep methods used for ordinary differential equations can also be used to generate 
the solution of delay differential equations, and stability in the limit as the step size 

tends to zero has been considered [7] -[9]. In this paper the absolute and relative sta- 

bility of linear multistep methods is considered for delay differential equations when 

the step size is finite [10]. For several commonly used integration algorithms, plots of 

the stability region are presented. The delay differential equations will be assumed to 

be of the form 

(I.1) dy(t) = fiy(t - Xi), 

with an initial function y(t) = 0(t) for to - ci < t < to, where fi and ci > 0 are con- 

stants, col = 0 and y is a scalar. 

1. Concepts of Stability. The form of the general linear multistep method is 

given by 
k k 

(1.1) Un+k =LaiUn+k-? +h biun+k-i, 
i=o i=o 
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where 
k = degree of multistep method, 

ai, bi = constant coefficients of the method, 
h = step size, 
u' = du/dt, 

Un = u(nh) = u(t), which assumes to = 0, with no loss of generality. 
If the exact solution yi is substituted for ui in (1.1), a truncation error at each 

step Tn+k must be added to the right-hand side for the equality to hold. Likewise, if 
the computed solution zi is substituted for ui in (1.1), a round-off error at each step 
en+k must be added to the right-hand side for the equality to hold. Then the propaga- 
tion error en,p is defined as the difference en P = Yn - zn. The notation used is en,p 
to denote the general solution and en to denote only the homogeneous part of the solu- 
tion. 

Stability analysis of a method is a study of the growth of homogeneous solution, 
en (enf+k = 0 and Tnf+k = 0) of the propagated error. For stability one is concerned 
not with the source of the error but only the behavior of the homogeneous solution 
after some error has been introduced. A numerical integration method is defined as 
absolutely stable if the homogeneous solution of the propagated error goes to zero as 
n approaches infinity, i.e. limnooen = 0, and it is defined as relatively stable if the ho- 
mogeneous solution of the propagated error grows more slowly than the exact solution of 
the linearized delay equation. Closely connected to the relative and absolute stability 
of a method is the stability of the delay equation which is being solved. The delay 
equation (1.1) is defined as stable if for any sufflciently small initial function the solu- 
tion y(t) approaches zero as t approaches infinity, i.e., 

lim Iy(t)l = 0 for Iy(T)l < 6, 6 > 0, -C < T < O. 

If the solution itself is approaching zero, it is important that the homogeneous 
solution of the propagated error also approach zero. On the other hand, if the exact 
solution is unstable, the requirement that the error go to zero is unduly stringent. What 
is important in this case is that the error grow no faster than the exact solution. Con- 
necting this with the stability of a method, it follows that, in the region of stability of 
the delay equation, it is necessary to consider the absolute stability of the method, 
while in the region of instability of the delay equation, it is sufficient to study the rela- 
tive stability of the method. This is the approach used here. Actually, the relative sta- 
bility of the method could be considered in both the region of stability and instability 
of the delay equation; but usually absolute stability is sufficient when the delay equa- 
tion is stable. 

1.1. Absolute Stability of a Method. To study the absolute stability of a method, 
the usual propagation error equation formed from (1.1) is given as 

k k 
(111) el+kPn ? aekP+k:n ,P + ?h ben+k-iP + Tn+k -efn+k- 

i=o (=o 

The term el+_ of (1.1.1) depends on how Znkiis evaluated. The evaluation of 
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Zn+k-i depends on the algorithm and its mode of usage, e.g., the predict, evaluate, 
correct, evaluate mode; the iterated corrector mode. el+kI is determined from (1.1), 

N 
(1.1.2) e'(t) = E fie(t - Xi) 

i=l1 

which in discretized form becomes 
N 

en,P = n-mi,P 

where 

mi = cilh an integer, 

n = t/h an integer. 

Note that the computation of 4n+k-i is determined by the value of Zn+k-i used in 
(1.1) which is now reflected in en-mi,p- The homogeneous solution of (1.1.1) is of the 
familiar form 

(1.1.3) en = 
2JCiP7 

where the pi are roots of the characteristic equation. 
Assume Tnf+k - En+k = T is constant over a step interval. This leads to the def- 

inition that a method is absolutely stable if and only if the magnitude of all roots of 
its characteristic equation are less than one, I p I < 1. This follows from the arguments 
used for ordinary differential equations [11], [12]. To illustrate the form of (1.1.1) 
and its characteristic equation, a predictor-corrector algorithm used in the iterated cor- 
rector mode is considered. Equation (1.1.1) becomes for this case 

(1.1.4) en +k,P = E (ai + bkhf, )en+k -i,P + h ? bi ? 
fen+k-mj-i,P + T, 

for which the characteristic equation is 

k k N\ M 
a1?khf)pM+k-i 

if 
(1.1.5) p M+ (ai + bihi + h E b ( EPk-i-m+M)] 

i=0 i=0 j=2 

where M = max=1..Nmj. Other modes are considered in the examples below. 
1.2. Relative Stability of a Method. From the definition of relative stability, a 

computable criterion for relative stability is developed which is based on the comparison 
of eigenvalues. The approach used is to obtain an approximate solution for both the 
propagated error equation and the linearized delay equation, and then compare their 
rate of growth. Starting with the delay equation, one can assume that the delay equa- 
tion (1.1.2) has a solution of the form 

00 

e(t) =? cieXit, 
i=1 

where the Xi are roots of the characteristic equation of (1.1.2) given by 
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N 
(1.2.1) s ? fi + E fie-swi. 

i= 2 

In discretized form, 

e(ih) = E ciexinh 
i=l1 

which, for large n, can be approximated by 

(1.2.2) e(nh) ; CDeDnh, 

where XD is the dominant root which is defined as 

Re(XD)= max Re(X1). 
i1 .00 

Parameterized with respect to h, (1.2.1) and (1.2.2) become, respectively, 

N 

T = h? + E h1e-7i and e(nh) ; CDe'Dn 
i=2 

where 

T = sh, hi = hfi and TD = XDh. 

Considering the method, the homogeneous portion of the propagation error equa- 
tion (1.1.1) has a solution given by (1.1.3) which for large n can be approximated by 
en ; dDpn, where PD is the dominant root which is defined as 

IPDI= max IpI. 
i= 1,...,M+k 

Given an approximate solution for both the delay equation and the propagation 
error equation of the method, it is possible to compare their relative rate of growth by 
comparing eXD and PD, which will be the dominant growth terms of each solution. 
For relative stability, the initial conditions are not important, since they only correspond 
to a translation of the solution which does not affect the rate of growth of the solution. 

From the definition of relative stability, it is necessary that the growth of the 
propagated error be slower than the growth of the exact solution of the linearized delay 
equation, which implies that the rate of growth of PD be less than or equal to the rate 
of growth of eTD. In equation form, the condition for relative stability is 

Re(TD) > ln IPD 1 

1.3. Stability of Delay Equation. Before one can proceed further in the stability 
analysis of a method, it is necessary to know the region of stability of the delay equa- 
tion in order to define the region where absolute and relative stability are relevant. The 
region of stability of the delay equation can be determined by studying the behavior of 
an error introduced in the exact solution [13]. Equation (1.1.2) is the error equation 
of interest here. The delay equation is stable if and only if the error equation is stable. 
It is well known that (1.1.2) is stable if and only if Re(s) < 0 for all roots of its char- 
acteristic equation (1.2.1). To determine the boundary between the stable and unstable 
regions, set s = jb, from which (1.2.1) becomes 
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N N 
(1.3.1) 0? =f + E ficoswib, b =- fisincoib. 

i=2 i=2 

2. Stability Region for Several Integration Algorithms. In this section the regions 
of stability for a nonzero step size are determined for several integration algorithms 
when applied to delay differential equations. The case treated here is that of a single 
delay for which (1.1) becomes 

y'(t) = fly(t) + f2y(t - co2). 

For this case Eq. (1.3.1) for the stability region of the delay equation becomes 

f2 = -b/sin cob, fi = b cotan cob, 

which is plotted in Fig. 2.1. This determines the region in the fJ - f2 plane in which 
absolute stability of the method is relevant. 

The first method chosen was the familiar Euler's method given by Yn + 1 = Yn + 
hfn, which has the characteristic equation pm+l - (1 + h1)pm - h = 0. 

The region of absolute and relative stability for Euler's method is defined in Fig. 
2.2 where hi = hfi. Figure 2.1, parameterized with respect to h and evaluated at m = 

2, is superimposed on Fig. 2.2. Two values of m, an even and an odd, were used to 
present some typical results. Other values of m result in modification of these regions. 

Milne's predictor-corrector algorithm was the second method considered, which is 
given by 

Y n + 1 = Y n -3 + (4h/3) (2yn-Yn-1 n-2? ) 

Yn+1 =yn-1 + h3(n+ 1+4n +n ) 

Since in practice the predict-correct mode is commonly used, it is the only mode con- 
sidered here. The characteristic equation is given by 

2m+3= (1 - 3 )2m+1 

[ 2m2 ( h2 2 8h2 
/h 16h 

? +- p2m+2 4h + )+ p2m (h+ 1) 

? Pm+l( 12 3 ) (13 ) ? 

8 2 22 4hm 8 3 1 21 ] 

The regions of absolute and relative stability are plotted in Figs. 2.3 and 2.4, 
respectively, as well as the parameterized stability curve for the delay equation. 

The Adams-Moulton predictor-corrector algorithm was the third method chosen 
which is given by 

+ ?m +(h24)(55y-59y1 ? 37Yn-2 9Yn-3 

Yn+1 =Yn~ ? (h/24) (9yPn+ ? 19y - 5y2-~1 ?Yn-2)- 
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In the predict-correct mode the characteristic equation is given by 

15h2 55122 2m+4 2m+3 1+ 6 p p / 

+ 21 pp2m+2 (59h? 52 )?p2m+1 (371 ?hl) 3p2mh2 

? PM+3(55 h h ? 20122 PM ,m2 122h ? 5122 
(12 1 2 2) (12 1 2 2) 

+ p h+ 1Ql h + h2) pm (hlh2 ) 

+ 55 
p3h2 - 

59 
p2h2 + 324 ph2 

3 
h2l 

24 2 24 2 24 2 8j2 

The regions of absolute and relative stability are plotted in Figs. 2.5 and 2.6, 
respectively, as well as the stability curve for the delay equation. 

For the methods considered, it is of interest to compare the regions of absolute 
and relative stability for delay differential equations and ordinary differential equations. 
Note that for h2 = 0, the absolute stability analysis of a delay differential equation 
reduces to that of an ordinary differential equation. The result is that the plots of the 
regions of absolute stability for delay differential equations also include the region of 
absolute stability for ordinary differential equations. The absolute stability region for 
ordinary differential equations is just the absolute stability interval on the hi -axis for 
delay differential equations. For each integration method considered, the region of rel- 
ative stability for ordinary differential equations is the entire positive hi-axis. Compar- 
ing the stability regions for ordinary differential equations and delay differential equa- 
tions, one can see that the stability regions are restricted for delay differential equations. 

Conclusion. The concepts of absolute and relative stability of linear multistep 
methods for a finite step size have been extended to delay differential equations. The 
change in the stability region as one moves away from the h1 -axis in the plots of the 
stability region emphasizes the importance of accounting for the delay terms when con- 

sidering the stability of an integration algorithm for solving delay differential equations. 
X ~~~~~~2 

X 2 =-a f2 

STABLE 
REGION 

, A 1/@~ 

-2 a _ 1 2 

F2 

FIGRE1[D 21. Stabilitly region for the delay-y diffeorential equat11ion. 
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FIGURE 2.3. Absolute stability region for Milne'sv method. 

X > \; 0.5 ///// ~m =2 
9 ~~~~~~m = 3 

FIGURE 2.4. Relative stability region for Milne's method. 

h h2 =-h. 
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FIGURE 2.3. Absolute stability region for Milne'as-oln method. 
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FIGURE 2.6. Relative stability region for the Adams-Moulton method. 
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